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“Soliton” solutions in a field theory of microemulsion
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We discuss a field theory of microemulsion that has been previously studied by a number of tech-
niques. We examine the localized solutions of this theory, with a view to understanding the kinetics of
phase growth. However, it is also suggested that, in the region of what was formerly considered to be an
isotropic Lifshitz point of the phase diagram, there may be a phase of microscopic multilamellar spheri-
cal objects. This new phase may displace the swollen lyotropic lamellar phase.
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I. INTRODUCTION

There have been a number of studies of quite simple
field theory models of self-assembly, containing oil, water,
and amphiphile [1]. These models are distinguished from
the Ising-like ¢* model by having a Laplacian squared
term with opposite sign to the normal Laplacian contri-
bution. In fact this sort of field theory may be extracted
from a frustrated Ising lattice model and the frustration
in the lattice couplings is reflected in the opposing signs
of these two types of gradient terms. One useful way of
thinking about this field theory is that the Laplacian
term, having negative coefficient, implies a negative
coarse-grained surface-tension term, and there is then a
Laplacian squared term required for stability [1]. There
result many phases containing numerous planar domain
walls. Here the positive- and negative-valued fields corre-
spond to oil and water rich regions and the boundary be-
tween them corresponds to amphiphile. However, as the
magnitude of the Laplacian coefficient diminishes, it
seems natural that there should be fewer such domain
walls, and this is reflected in the mean-field theory predic-
tion that the planar domain walls move apart to the limit
of infinite spacing as this coefficient vanishes. Indeed, at
first sight this is all quite satisfactory as a model of self-
assembly since the coefficient of the Laplacian term may
be related to the concentration of amphiphile in the
phase, the lamellar phase considered to be a lamellar
liquid-crystalline phase, and it is indeed to be expected
that the mean interlamellar spacing becomes large as the
concentration of this component becomes small.

However, there is a fundamental problem in this inter-
pretation based, as it is, on mean-field arguments. First,
of course, fluctuations in the lamellar phase result in the
well known quasi-long-ranged order. Examination of the
low-temperature “tensionless” lamellar phase indicates
that d; =3 away from the large swelling limit, and this
may be accepted as an accurate estimate. More
significantly, as the coefficient of the Laplacian term van-
ishes, the field theory itself appears to acquire the naive

*Author to whom correspondence should be sent.

1063-651X/94/50(3)/2115(5)/$06.00 50

upper and lower critical dimensions dy; =8, d; =4, re-
spectively. Clearly, there is a strong possibility that in
the vicinity of this point in parameter space, there might
be some quite interesting phenomena. We shall argue
that, in fact, the highly swollen lamellar phase is not
stable with respect to fluctuations and that this may be
reflected in the presence of a finite swelling limit in the
liquid-crystalline phase. Beyond this limit, the swollen
liquid crystal becomes unstable, and we propose that a
new phase may result. We are tending to a situation
where this phase must have no long-ranged or quasi-
long-ranged order and there is every expectation that it
would consist of a fluid of the localized solutions of the
underlying field theory [2]. The reasons are quite
straightforward. If large coherent solutions of the field
theory are unstable with respect to fluctuations, then, if
there are stable minima or long-lifetime saddle points of
the field theory corresponding to localized solutions, we
may imagine that they will form a fluid in which the en-
tropy favors a dispersion composed of those localized ob-
jects, providing that interactions between them cause no
significant destabilization. We may note with interest,
however, that the stable localized solutions in the region
of the phase diagram under discussion are quite different
from micellar objects, these becoming favorable only
when the gradient and squared-gradient interactions no
longer compete. In the present case one has localized
solutions corresponding, roughly, to concentric spheres
of surfactant separated by solvent spheres.

Therefore, the steps in establishing the presence of
such a phase are as follows: First, one must establish the
existence and a stability of localized solutions of the field
theory. Second, one must compare the approximate free
energy of a phase composed of such objects to the com-
peting phases. This is in principle a difficult calculation,
and we shall here merely be able to make an estimate.

In summation, there are two reasons for which we may
be interested in such solutions. First, they must be
characterized before one can consider study of the
phase-transition kinetics of the theory. Second, we be-
lieve there is a possibility of a new equilibrium phase
structure in the model.

Since the concepts that we discuss owe much to field
theory, the solutions we discuss are often called solitons,
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even though they are, technically, merely localized solu-
tions. The remainder of this paper is a description of our
attempts to carry out this program of research.

II. SOME PROPERTIES
OF LOCALIZED SOLUTIONS

The effective Landau-Ginzburg-Wilson Hamiltonian
that we consider is [3,4]
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where the coefficients b, ¢, and A are connected with the
parameters j and m of the original frustrated ising lattice
model [5] by the equations [4]

p— 20 +12m)

j+12m @
_ 120 +5m)—20
¢ j+12m ’ 3
800
}\, =, (4)
O (j+12m)?

The parameters j and m are, in turn, related to the mi-
croemulsion parameters by the equations [5]
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where z 4, z, and zy, are the activities of amphiphile, oil,
and water respectively; K is the amphiphile-amphiphile
interaction energy; and O is the temperature (times the
Boltzmann’s constant). Note that the particular case
zp=2zy is considered here, and it is implicitly assumed
that the energy of bending of the surfactant film is in-
dependent of the direction of the bend (the theory is sym-
metric in oil and water).
By transforming back to the fields
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where, as we commented earlier, there is a Laplacian and
Laplacian squared term, and A =(327°/3)A,. It is known
from various mean-field calculations that, in the vicinity
of b=0, ¢ =0, there exist three phases: paramagnetic
(disordered), ferromagnetic, and lamellar. These are the
appropriate global minima of the Landau-Ginzburg-
Wilson Hamiltonian, and within the mean-field approxi-
mation, they are also the stable macroscopic phases [6].
The predicted mean-field phase diagram is sketched in
Fig. 1.

However, as outlined in the Introduction, we believe
that such phases are not stable with respect to fluctua-
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FIG. 1. Mean-field phase diagram. Lamellar (bottom right),
ferromagnetic (bottom left), and disordered phases are divided
by two bold lines and the bold parabola ¢ = —b%/4, b <0. The
thin parabolas represent typical families of parameters, which
are considered in Sec. III. The dashed curve indicates merely
the likely region of stability for the “soliton” phase.

tions in the limit b =0 and we therefore seek localized
solutions of the Hamiltonian (6), with the prospect of
constructing a macroscopic fluid of these objects. Such a
phase would acquire stability in the vicinity of the mean-
field lamellar-ferromagnetic phase boundary.

In the present context, a localized solution ¢(r) has
the property ¢o(r)—0 as |r|— o, and, among others,
must satisfy the following conditions:

9,H[¢$*]=0, (7)

dgH[¢*]=0, 8)
as well as

a2 H[4*]1>0, 9)

0psH[9*120 , (10)

where ¢*(r)=ady(Br). If we define h;= [dr(Ad,),
h,=b fdr(V¢0)2, hy=c [dr¢}, and h,=(A/2) [dr &;,
we find that Egs. (7)-(10) imply the conditions

hy+hy,+hy+2h,=0, (1
hy—hy—3(hy+h,)=0, (12)
hy+hy+h;+6h, >0, (13)
hy+6(hy+hy)>0 . (14)

We note that Eq. (11) implies that the inequality (13) is
satisfied for A >0. Equations (11), (12), and (14) represent
only necessary conditions on the solution space, but they
are of considerable help in numerical studies of the prob-
lem. In particular, they exclude regions of the phase dia-
gram from consideration in seeking localized solutions.
For example, from (11) we find that b <0 or ¢ <O is the
only area in which solutions may be found. Still, the ex-
pressions (6)—(14) may not be applied to all choices of
solution. The detailed analysis of the asymptotic form of
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a solution for large distance from its center is necessary
since, under certain circumstances, specific terms in these
equations may diverge. This analysis may be carried out
for a spherical solution of the type we seek to study.

A necessary condition to minimize the energy is
0=(8H /6¢(r)), which, for the Hamiltonian (6), becomes

A’p—bAd+chp+Ardp3=0 . (15)

If we consider only spherical solutions, we find that
3
¢<4’—b¢‘2’+c¢+x3”7=0, (16)
r
where ¥(r)=r¢(r), r=|r|. We suppose
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We may note that the form (6) of the Hamiltonian is
not well defined for cases (1) and (2) [Egs. (17) and (19)]
because of the long-ranged nature of the solutions. The
alternative form

H{g]=47" [ dr |$(A7—bA+c)p+ 2t 23)

is well defined, being actually the original form of the
Hamiltonian, as it is obtained from a frustrated Ising lat-
tice model [7]. The mathematical check on the validity
of a numerical solution for cases 1 and 2 may be accom-
plished using the form (23), and with h,= [dr¢A%g,
h,=—b [dr $A¢, and h and h, given as before, we find
that Eq. (11) becomes

H[¢y1=—4rh, . 24)
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Equation (15) implies an underlying one-parameter
problem. Thus, if a localized solution ¢, . ,(r) of Eq. (15)
is found for the parameters b, ¢, and A, then the function

¢Bb,ﬁzc,(ﬁz/a)k(r) =‘/Z¢b,c,l( ‘/Br)r a> 0: B> 0 (25)

is a solution of the same equation with the implied new
parameters. This means that there are families of solu-
tions such that

~ = B?
(b,c,A)—(b,z,X)= Bb,Bzc,: , (26)
#(r)—>(r)=Va¢(VPr), 27
H(¢1—H[$1=aVBH[4] . (28)

One important and quite remarkable aspect of these rela-
tions is that if a single localized solution is obtained for a
given A, a solution may be obtained for any A. Thus,
without losing generality, the A can be fixed and kept
constant by the condition a=p% Then, if a solution is
obtained for a given (bg,c(), a solution may be obtained
along the curves defined by

b=PBby, c=p%, (29)
(see Fig. 1), so that

$(r)=Ppo(VBr), H[$1=B"Ho[o], (30)
where H; and ¢((r) are the Hamiltonian and the soliton
at (bg,cq).

Numerical calculations, along with the arguments
given in this section, lead us to suppose that long-ranged
localized solutions exist throughout the area marked
lamellar phase in Fig. 1. In Fig. 2 we present three
numerical solutions corresponding to A=1 and
(b,c)=(—2.3,1.2), curve 1; (—0.5,—0.5), curve 2; and
(0.1,—0.5), curve 3. Curve 1 has the asymptotic form of
(19), while curves 2 and 3 have the asymptotics of Eq.
(17).
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FIG. 2. Examples of localized solutions (A=1) ¢ as a func-
tion of r that have been determined numerically. From top to
bottom they correspond to (b,c)=(0.1,—0.5) with a constant
shift of amplitude of +0.5, (b,c)=(—2.3,1.2), and
(b,c)=(—0.5,—0.5) with a shift of amplitude of —0.5. These
shifts have been made to permit all three solutions to be shown
on the same plot.
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We should emphasize that solutions of such type are
microscopic solutions, consisting physically, in most of
the phase diagram, of only a few layers. There also exists
another spherically symmetric solution of macroscopic
extent. Presumably, the latter corresponds to vesiclelike
solutions that are sometimes found as metastable variants
of the swollen lamellar phase [8]. The microscopic local-
ized solutions potentially represent a more interesting
choice, since, in favorable circumstances, these may be so
numerous that they actually dominate the phase struc-
ture.

The existence of these solutions had been established
numerically, and verified by several changes and exten-
sions of the r scale. Another check is provided by virial
relations. Since the relation (24) is rather trivial and easy
to satisfy numerically, we used the following procedure to
derive another convergent relation: Once a solution i of
Eq. (16) is found, the parameters of the asymptotic form
Y, are easy to isolate. Then an equation for £=¢— 1,
that is analogous to (16) can be written, and it is easy to
establish a functional the extremum of which provides
this equation. This functional leads to a virial equation
that is analogous to (12), but convergent.

III. THE POSSIBILITY OF A STABLE
DISPERSION OF THE LOCALIZED SOLUTIONS

To investigate the question of stability of a localized
solution ¢y(r) with respect to fluctuations (such stability
might lead to at least metastability of the dispersed
phase), we must consider eigenvalues p; of the operator
(8*H)/[8¢(r)8¢(r’)]. These eigenvalues are given by the
equation

[A2=bA+c+3A5(r)]n;(r)=p;n;(1) . (31)

Here 7,(r) are the eigenfunctions of the operator. Con-
sider the stability question along the curves defined by
Egs. (29). The equation

[A2—=bA+E+3Ago(r) 7, (1) =p,7;(r) (32)

[compare with (31)] where b=pBb, T=p*, and
Bo(r)=Bdo(VBr), possesses eigenfunctions 7 ;(r)
=B 217]-(1/—Br) and eigenvalues 5, =p%;. In the vicinity
of the origin the negative eigenvalues p; become close to
zero and they ultimately acquire stability.

We may discuss the possibility of the macroscopic
phases dominated by such objects. It should be noted, of
course, that the correct way to proceed at this stage is to
carry out a full one-loop calculation of the free energy
based on the intersoliton potential obtained from the in-
teraction energy of localized solutions. The interactions
may thereby be constructed for various relevant regions
of the phase diagram. A full calculation is a major un-
dertaking, and even more elementary models in physics
have not been treated in this manner as yet [9]. Our pur-
pose here is, however, merely to indicate the possibility of
global stability of such a “soliton” phase. We therefore
want to compare the free energies of such a phase and the
lamellar phase, being interested in the region near the ori-
gin of the phase diagram.
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First, we may estimate the leading term in the mean-
field free energy for the lamellar phase in the vicinity of
the order-disorder transition (¢ =b52/4). In this region of
the phase diagram the lamellar phase may be described
by the single harmonic [6]

(33)

Here k; =V —b /2. The closer (b,c) are to the curve
¢ =b?/4, the more exact Eq. (33) is. The Hamiltonian
(23) becomes

¢L(r):A Sin(ka+XL ), l‘:(X,,V,Z) .

|
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and, using the condition d ,[(H[¢;)]/V =0 to obtain 4,
we find

(35)

So, within this approximation, the free energy of the
lamellar phase goes to zero as the parameters (b,c) tend
to the mean-field transition curve.

The energy H,, of interaction of localized solution
¢(r) and Q¢(r+R) (where Q==1)is [10]

H, (R)=H[$(r)+Qd(r+R)]—H[$]—H[Qd], (36

where O may be viewed as a charge emerging from the
symmetry of the solution space. If the distance R be-
tween the solutions is large enough, we may estimate the
energy using the asymptotic form of the soliton ¢. For
the area 0 <c¢ < b?/4 with b <0 [see Eq. (19)], the energy
is

_ sinfk; R+Y,) _ sin(k,R+Y,) )

H,(R)~ 4, R ) o (37)
In the area ¢ <0 {see Eq. (17)], one would have

H, (R)~ ASDERTX) (38)

R

In this latter, the simplest, case, we have found that, in
the Debye-Huckel approximation [11], the free energy
density of correlation between localized solutions is ap-
proximately equal to

A 4SiIIX 2

)
%

for
kT

n << —"42 ,
8msiny 4

where n is the density of the gas of localized solutions
and T is the temperature. We know that the free energy
to create one isolated localized solution is also negative,
and the ideal gas term for the free energy is negative as
well. thus, the free energy of a very dilute dispersion (if it
is diluted) of these “‘onions” should be negative. It seems
likely that addition of short-range interactions provides
only overall phase stability and does not affect
significantly the comparison between the dispersion and
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the lamellar phase.

This means that the localized solution phase may be
more stable than the lamellar phase at least in a region
which is indicated in a topological fashion in Fig. 1.

IV. CONCLUSIONS

We have shown that nontrivial localized solutions exist
in part of the mean-field phase diagram. Arguments are
forwarded that a dispersion of these objects may even be
stable in the large swelling lamellar region of the phase
diagram. The latter arguments would require consider-
able strengthening before the matter can be realistically
settled.

However, the implications for experiments are poten-
tially interesting. That is, in the large swelling limit one
would expect to find a metastable mesoscopic (~1pum)
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vesicle or “onion” phase. In addition, there may be a
stable phase, such as the one we have discussed, that con-
sists of much smaller onionlike objects in a background
of fluctuating layered structures. Such objects may be
only a few solvent layers in extent and may be difficult to
find. Nevertheless it would be worth attempting careful
freeze-fracture studies in the large swelling limit to probe
for such a phase.
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